A CONVENIENT ROUTE TO 5-METHYL-3,7-OCTADIENIC ACID FROM 2,4-HEXADIENAL VIA UMPOLUNC AND DOUBLR COIlI REARRANGEMBm 1I

KLAUS FISCHER $^{2)}$ and SIEGFRIED HUNIG ^{*)}

Institut für Organische Chemie der Universität Würzburg Am Hubland, D-8700 Wiirsburg, W. Germany

(Received in Germany 20 May 1986)

Abstract: The addition product of 2,4-hexadienal and trimethylsilyl cyanide **1** reacts after deprotonation with allylic bromide 2 (n=l) to the triene 4 (n-l) which on heating undergoes double Cope rearrangement forming α -trimethyls nitriles $4(E)-7$ and $4(Z)-7$. These compounds are smoothly transformed into $3(E)-7$ and $3(2)-5$ -methyl-3,7-octanoic acid methyl esters $3(E)-8$ and $3(2)-8$. The reaction sequence may be synthetically useful since it is supposed to be applicable to different substituent patterns.

Trimethylsilyl cyanide has been shown to add regioselectively to carbonyl groups of α , β -unsaturated aldehydes ³⁾ employing as catalysts zinc iodide ^{3,4)}, aluminium chloride ^{31,5)}, and cyanide ions ^{3C,31,4}⁾ or, as we recently found 6), the very efficient tetrabutylammonium iodide. From these adducts LDA produces ambident anions, which react with a variety of alkylating agents mainly or exclusively in α -position $^{3\mathrm{D},\mathrm{0D}}$. Since the group for umpolungcan be removed under extremely mild conditions the whole reaction sequence has been developed into a valuable method for the synthesis of α,β -unsaturated ketones via umpolung 3b,6a)

We have already shown that this procedure can easily be extended to 2,4-dienals. Adduct **1,** obtained in 95% yield from 2,4-hexadienal and trimethylsilyl cyanide, $3b$) is smoothly deprotonated by LDA at -78°C. Thereby an ambident anion is formed, which principally can be alkylated at the α, γ or ϵ -position. Again very high a-regiospecificity is observed: with methyl iodide^{3b)}, isopropyl iodide^{3b)} and, as demonstra recently, unsaturated bromides 2 (n=2,3) ^{OD)}, where 95% of α -adducts are observed with no evidence for the γ - or e-adducts in the crude reaction product (¹H NMR). With allyl bromide 2 (n=1) the same result can be achieved to yield 4 (n=1) if the alkylation is performed at -40°C from the very beginning and not started at -78°C as with the other examples cited. Only 2 (n=l) reacts with the anion of 1 already at -78°C forming thereby $a \alpha / \gamma$ -product mixture 4 (n=1) : 5 = 62 : 38 from which in addition to 4 (n=1) amide 3 can be isolated in 13% yield by treatment of the crude product with aqueous ammonium chloride (cf. 6a). Probably solvent separated ion pairs are responsible for this substantial γ -attack of 2 (n=1) at -78°C. With increasing reaction temperature contact ion pairs become more important⁷⁾ and the observed higher selectivity would therefore be expected due to the directing effect of the properly situated gegen- \sin^{8} .

Recently, we have reported on the smooth intramolecular Diels-Alder reactions of 4 (n=2,3) at 180°C where the cycloaddition to 6 (n=2,3) occurs in nearly quantitative yield^{0D)}. Herewith we describe tha with product 4 (n=1), however, no [4+2] cycloaddition product 6 (n=1) is formed. Instead, nitriles $4(E)-7$ and 4(Z)-7 ware isolated in reasonable yields, which have not been optimized. Methanolysis of these nitriles produces methyl 5-methyl-3(E),7-octadienoate $3(E)$ -8 and its $3(Z)$ -isomer $3(Z)$ -8 in 82% yield without affecting the E/Z ratio. Apparently the transformation 4-7 involves two consecutive Cope rearrangements passing through intermediate 5 which, however, could not be detected throughout the rearrangements $({}^{1}H$ NMR). Obviously, the first [3.3] rearrangement (formation of the acrylonitrile derivative 5, cf. 9) has a smaller driving force than that of the dienic nitrile 7.

Adopting our method of umpolung, F.E. Ziegler et al. have already synthesized dienes 9. These were transformed by a single Cope rearrangement to 10. Subsequent solvolysis 9) affords 11 in good yields. On this basis the same group has developed a versatile method for constructing steroidal sceletons¹⁰.

The transformation $4 (n=1) \rightarrow 7$ therefore appears as a logical extension of the sequence $9 \rightarrow 10$. Judging on our experience with umpolung of α , β -unsaturated aldehydes $3b$, $6b$), and on Ziegler's results on the corresponding Cope rearrangement $9,10$, additional substituents should be tolerated both in the dienic and allylic moiety of 4 without blocking the two consecutive Cope rearrangements. Starting with appropriate dienals and allylic halides a great variety of substituted 3,7-octadienoates should be accessible.

We are grateful to the Fonds der Chemischen Industrie and the BASF Aktiengesellschaft, Ludwigshafen, for support of this study.

EXPERIMENTAL PART

 $2-(2-Propenyl)-2-trimethylsiloxy-3(E),5(E)-heptadiene nitrile (4; n=1): Addition of 3.919q(20.0 mmol) 1$ in 8 ml THF to 22 mmol LDA in 20 ml THF at 78 °C produced a yellow precipitate. After adjusting the temperature to -40 °C 2.66 g (22.0 mmol) allyl bromide (2; n=1) was added during 15 min. After stirring the red orange solution for 12 h at -40 °C, 20 ml saturated NH₄Cl solution was added at room temperature. The aqueous layer was extracted with 3x10 ml petrol ether. After drying the organic phases over MgSO₄ and evaporating the solvents, the crude product 4.00 g (85%) yielded 3.55 g (75%) $(4; n=1)$, b.p. 45 °C/2.10⁻² Torr (Kugelrohr).

IR (film) (cm⁻¹): 3080, 3020, 1635, 1655. ¹H nmr (400 MHz, CDCl₃): 6=0.14 (s, 9H, OSiMe₃), 1.76 (dd, 7-H), 2.47 (mc, 1'-H_a), 2.57 (mc, 1'-H_b), 5.17 (ddt, 3'-H_a), 5.18 (ddt, 3'-H_b), 5.47 (d, 3-H), 5.75 (ddt, 2'-H), 6.02 (mc, 5-H), 6.45 (dd, 4-H); J (Hz): $J_3 = 0.6$, $J_5 = 1.5$, $J_3 = 1.7$, $J_6 = 6.6$, $J_{21,116/h}$ 7.2, $J_{4.5}=10.4$, $J_{3' b.2'}=10.5$, $J_{1'a.1'b}=13.7$, $J_{3.6}=15.2$, $J_{3.4}=15.5$, $J_{3'a.2'}=16.8$ -C₁₃H₂₁ NOSi (235.3) Calc.: C, 66.33; H, 8.99; N, 5.95. Found: C, 66.34; H, 9.09; N, 5.88.

Stereoisomers of 6-methyl-2-trimethylsiloxy-2,4(E),8-nonatriene nitrile $(4(E)-7)$ and 6-methyl-2-trimethylsiloxy-2,4(Z),8-nonatriene nitrile $(4(Z)-7)$: 1.18 g (5.01 mmol) $(3; \text{ n=1})$ in 5 ml benzene were heated in a sealed tube at 180 °C for 90 h (monitored by an $¹H$ nmr experiment with 96 mg</sup> (0.42 mmol) (4; n=1) in 0.4 ml C_6D_6). From both samples the solvent was evaporated and the residue (1.22 g) distilled: 720 mg (56%) b.p. 75-85 $^{\circ}$ C/5 \cdot 10⁻¹ Torr (Kugelrohr) of 83 % 4(E)-7 (consisting of $2(2)$,4(E)-7 and $2(E)$,4(E)-7 69:31) and 17% 4-(Z)-7 (consisting of $2(E)$,4(Z)-7 and $2(2)$,4(Z)-7 59:41 or 41:59). The amount of isomers was calculated from the intensities of the 6-CH₂ ¹H nmr signals.

IR (film) (cm⁻¹): 3070, 2210, 1595, 1635. ¹H nmr (400 MHz, CDCl₃): 2(Z),4(E)-7 (6): 0.26 (s, 9H, OSiMe₃), 0.99 (s, 3H, 6-Me), 5.71 (ddt, 8-H), 5.82 (ddd, 5-H), 5.99 (dd, 3-H), 6.26 (ddd, 4-H); J (Hz): $J_{3.5}=0.8$, $J_{4.6}=1.2$, $J_{6-Me.6}=6.8$, $J_{7.8}=7.0$, $J_{5.6}=7.7$, $J_{3.4}=10.8$, $J_{8.9b}=11.0$, $J_{4.5}=15.6$, $J_{8.9a}=16.4$. $2(E)$,4(E)-7 (6): 0.23 (s, 9H, OSiMe₃), 1.00 (s, 3H, 6-Me), 5.72 (ddt, 8-H), 5.80 (dd, 5-H), 8.18-6.36 (m, 3-H, 4-H); J (Hz): $J_{6-Me.6}$ =6.8, $J_{7.8}$ =7.0, $J_{5.6}$ =7.5, $J_{8.9b}$ =11.0, $J_{4.5}$ =14.3, $J_{8.9a}$ =16.4 -2(E),4(Z)-7 (6): 0.26 (s, OSiMe₃), 0.97 (s, 6-Me), $J_{6-Me.6}$ =6.8 Hz. - 2(2),4(Z)-7 (6): 0.24 (s, 9H, OSiMe₃), 0.96 (s, 3H, 6-Me). $J_{6-Me.6}$ =6.8 Hz. - Common signals of all isomers (6): 1.98-2.16 (m, 7-H), 2.27-2.37 (m, 6-H), 4.95-5.03 (m, 2H, 9-H_a, 9-H_b). -C₁₃H₂₁NOSi (235.4) Calc.: C, 66.33; H, 8.99; N, 5.95. Found: C, 66.10, H, 8.92; N, 5.73.

Methyl 5-methyl-3(E),7-octadienoate (3(E)-8 and methyl 5-methyl-3(Z),7-octadienoate (3(Z)-8): 240 mg (1.02 mmol) 7 were heated under reflux with 60 mg KF in 5 ml dry methanol. After evaporation the residue was dissolved in hexane, washed with saturated NH₄Cl, dried over MgSO₄, concentrated and distilled. From the residue 170 mg (99%) were distilled 140 mg (82%) 8, b.p. 75-80 °C/4 Torr (Kugelrohr), containing 82% 3(E)-8 and 18% 3(Z)-8 (from 5-Me and -CO₂Me ¹H nmr signals).

IR (film) (cm $^{-1}$): 3060, 1635, 1735. ¹H nmr (400 MHz, CDCl₃). 3(E)-8 (6): 0.95 (d, 3H, 5-Me), 1.97 $(\underline{AB}, 6-H_a)$, 2.05 (AB, 6-H_b), 5.19 (mc, 5-H), 2.98 (mc, 2-H), 3.62 (s, 3H, CO₂Me), 4.93 (ddt, 8-H_b), 4.95 (ddt, 8-H_a), 5.42 (AB, 4-H), 5.45 (AB, 3-H), 5.70 (ddt, 7-H); J (Hz): $J_{6.8b}$ = 1.1, $J_{6.8a}$ =1.5, $J_{8.8a}$ =2.1, $J_{4.5}$ =2.9, $J_{2.3}$ =5.4, $J_{5.6b}$ =6.8, $J_{6b.7}$ =6.8, $J_{5.5-Me}$ =6.8, $J_{5.6a}$ =7.1, J_{6a} ₇=7.1, $J_{7.8b}$ =10.5, $J_{6.6a}$ = 13.9, $J_{3.4}$ =15.3, $J_{7.8a}$ =16.8, - 3(Z)-8 (6): 0.93 (d, 3H, 5-Me), 3.63 (s, 3H, -CO₂Me), 4.90-4.98 (m, 2H, 8-H_{a/b}), 5.69 (ddt, 7-H); J (Hz): $J_{5,Me-5}$ =6.8, $J_{7,6}$ =7.2, $J_{7,8b}$ =10.2, $J_{7,8a}$ =17.1 $C_{10}H_{16}O_2$ (168.2) Calc.: C, 71.39; H, 9.59. Found: C, 71.60; H, 9.56.

2-(2-PropenyI)-3(E)-pentene carboxamide (3) and nitrile 4 (n=l): Addition of 1.95 g (10.0 mmol) **1** in 4 **ml** THF to 11.0 mmol LDA in 10 ml THF at -78 "C furnished a yellow precipitate. After stirring for 30 min. 1.33 g (11.0 mmol) allyl bromide $(2; n=1)$ were slowly added. The precipitate dissolved already at -78 °C (in contrast to the addition of bromides 2; n=2,3). The orange red solution was warmed to room temperature within 12 h and worked up as described for 4 (n=1). The crude product, obtained in quantitative yield (2.15 g), consisted of a mixture of 4 (n=1) and 3 in a ratio 68:32 $({}^{1}H$ nmr, 60 MHz, CDCl₂). Addition of n-pentane yielded 210 mg (14%) amide 3 as yellowish precipitate. Whereas 1.54 g (65%) 4 (n=1) were isolated from the solution by Kugelrohr destillation with b.p. 45 °C/ 2.10^{-2} Torr, the precipitate furnished 195 mg (13%) 3 on sublimation at 80 °C/5 \cdot 10⁻² Torr, colorless crystals, m.p. 83 °C.

IR (film) (cm⁻¹): 3330, 3150, 3080, 3020, 1675, 1625. ¹H nmr (400 MHz, CDCl₂): 1.65 (m, 3H, 5-Me), 2.13 (m, 3H, 1-H_a, 1'-H), 2.27 (m, 1H, 1-H_b), 2.56 (m, 1H, 2-H), 4.99-5.04 (m, 2H, 3'-H_a, 3'-H_b), 5.31 (ddq, 1H, 3-H), 5.49 (ddq, 1H, 4-H), 5.74 (m, 1H, 2'-H), 5.96, 6.41 (s, 2H, -NH₂); J (Hz): $J_{5,4}$ =6.30, $J_{5,3}$ =1.50 Hz, $J_{1a,1b}$ =14.40, $J_{1a,2}$ =8.55, $J_{1',2}$, =7.05, $J_{1b,2}$ =5.85, $J_{2,3}$ = 7.95, $J_{2,4}$ =1.10, $J_{2,2}$,^{$=1.00$, J_{3a} ,₂, $=16.95$, J_{3b} ,₂, $=10.30$, $J_{3,4}$ $=15.30$. -} C₀H₁₅NO (153.2) Calc.: C, 70.55; H, 9.87; N, 9.14. Found: C, 70.50; H, 9.67, N, 9.02.

REFERENCES

- 1) Paper XV of the series: Trimethylsilyl Cyanide A Reagent for Umpolung. Paper XIV: K. Fischer and S. Hiinig, J. Org. Chem., submitted.
- 2) Taken from the thesis K. Fischer, Universität Würzburg 1985.
- 3) a) K. Deuchert, U. Hertenstein and S. Hiinig, Synthesis 1973, 777. b) U. Hertenstein, S. Hiinig and M. Oiler, Synthesis 1976, 416; Chem. Ber. 113, 3783 (1980). c) E.J. Corey and G. Schmitt, Tetrahedron Lett. 21, 731 (1980).
	- d) D.A. Evans, L.K. Truesdale and G.L. Caroll, J. Chem. Soc., Chem. Commun. 1973, 55.
	- e) D.A. Evans and L.K. Truesdale, Tetrahedron Lett. 1973, 4929.
- 4) W.J. Greenlee and D.G. Hangauer, Tetrahedron Lett. 24, 4559 (1983).
- 5) W. Lidy and W. Sundermeyer, Chem. Ber. 106, 587 (1973).
- 6) a) Paper XI: S. Hünig and H. Reichelt, Chem. Ber. 119, 1772 (1986). b) Paper XII: K. Fischer and S. Hünig, Chem. Ber., in print.
- 7) J. Smid, Angew. Chem. 84, 127 (1972).
- 8) H. Ahlbrecht, Chimia 31, 391 (1977).
- 9) F.E. Ziegler, R.V. Nelson and T.-F. Wang, Tetrahedron Lett. 21, 2125 (1980).
- 10) a) F.E. Ziegler and T.-F. Wang, Tetrahedron Lett. 22, 1179 (1981); J. Am. Chem. Soc. 106, 718 (1984).

b) F.E. Ziegler, S.I. Klein, U.K. Pati, and T.-F. Wang, J. Am. Chem. Soc. 107, 2730 (1985).